Abstract

The electro-osmosis technique can be used for rapid dewatering and consolidation of deep soft foundations. Considering the abnormal volt-ampere characteristics of soil at the initial stage of electro-osmosis using electrokinetic geosynthetics (EKG) electrodes, the hypothesis that the interfacial resistance between electrode and soil is related to current was formulated. A new method was used to distinguish the soil resistance and interfacial resistance, and an experiment was designed to verify them. The results show that the soil resistance does not change with the changing current in the circuit, but the interfacial resistance is closely related to the current. The interfacial resistance decreases as the current increases and is approximately a power function of the current. This relationship applies to aluminium, copper, iron and EKG electrodes. In addition, a design for the field application of electro-osmosis was developed focusing on power supply and efficiency. The calculation results show that the proportion of soil effective potential is closely related to the potential gradient imposed by the power supply. The experimental results reveal the relationship between the potential gradient and the efficiency of electro-osmosis, which provides a theoretical basis for the determination and optimisation of electric power in electro-osmosis system design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.