Abstract

This paper introduces a navigation system based on combined global positioning system (GPS) and laser-scanner measurements for outdoor ground vehicles. Using carrier-phase differential GPS, centimeter-level positioning is achievable when cycle ambiguities are resolved. However, GPS signals are easily attenuated or blocked, so their use is generally restricted to open-sky areas. In response, in this work we augment GPS with two-dimensional laser-scanner measurements. The latter is available when GPS is not and further enables obstacle detection. The two sensors are integrated in the range domain for optimal navigation performance. Nonlinear laser observations and time-correlated code and carrier-phase GPS signals are processed in a unified and compact measurement-differencing extended Kalman filter. The resulting algorithm performs real-time carrier-phase cycle ambiguity estimation and provides absolute vehicle positioning throughout GPS outages, without a priori knowledge of the surrounding landmark locations. Covariance analysis, Monte Carlo simulations, and experimental testing in the streets of Chicago demonstrate that the performance of the range-domain integrated system far exceeds that of a simpler position-domain implementation, in that it not only achieves meter-level precision over extended GPS-obstructed areas, but also improves the robustness of laser-based simultaneous localization and mapping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.