Abstract

We present a systematic and complementary study of quantum correlations near a black hole by considering measurement-induced nonlocality (MIN). The quantum measure of interest is discussed for the fermionic, bosonic and mixed fermion–boson modes on equal footing with respect to the Hawking radiation. The obtained results show that in the infinite Hawking temperature limit, the physically accessible correlations do not vanish only in the fermionic case. However, the higher frequency modes can sustain correlations for the finite Hawking temperature, with mixed systems being more sensitive towards the increase in the fermionic frequencies than the bosonic ones. Since the MIN for the latter modes quickly diminishes, the increased frequency may be a way to maintain nonlocal correlations for the scenarios at the finite Hawking temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call