Abstract

Dynamic preload parameters are used to guide perioperative fluid management. However, reported cut-off values vary and the presence of a gray zone complicates clinical decision making. Measurement error, intrinsic to the calculation of pulse pressure variation (PPV) has not been studied but could contribute to this level of uncertainty. The purpose of this study was to quantify and compare measurement errors associated with PPV calculations. Hemodynamic data of patients undergoing liver transplantation were extracted from the open-access VitalDatabase. Three algorithms were applied to calculate PPV based on 1 min observation periods. For each method, different durations of sampling periods were assessed. Best Linear Unbiased Prediction was determined as the reference PPV-value for each observation period. A Bayesian model was used to determine bias and precision of each method and to simulate the uncertainty of measured PPV-values. All methods were associated with measurement error. The range of differential and proportional bias were [- 0.04%, 1.64%] and [0.92%, 1.17%] respectively. Heteroscedasticity influenced by sampling period was detected in all methods. This resulted in a predicted range of reference PPV-values for a measured PPV of 12% of [10.2%, 13.9%] and [10.3%, 15.1%] for two selected methods. The predicted range in reference PPV-value changes for a measured absolute change of 1% was [- 1.3%, 3.3%] and [- 1.9%, 4%] for these two methods. We showed that all methods that calculate PPV come with varying degrees of uncertainty. Accounting for bias and precision may have important implications for the interpretation of measured PPV-values or PPV-changes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call