Abstract

AbstractExponential Random Graph Models (ERGMs) are becoming increasingly popular tools for estimating the properties of social networks across the social sciences. While the asymptotic properties of ERGMs are well understood, much less is known about how ERGMs perform in the face of violations of the assumptions that drive those asymptotic properties. Given that empirical social networks rarely meet the strenuous assumptions of the ERGM perfectly, practical researchers are often in the position of knowing their coefficients are imperfect, but not knowing precisely how wrong those coefficients may be. In this research, we examine one violation of the asymptotic assumptions of ERGMs – perfectly measured social networks. Using several Monte Carlo simulations, we demonstrate that even randomly distributed measurement errors in networks under study can cause considerable attenuation in coefficients from ERGMs, and do real harm to subsequent hypothesis tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.