Abstract
We consider analytically the use of existing instrumentation in determining asteroid gravity fields from orbiting spacecraft. Asteroids (Eros as an example) are modeled as homogeneous triaxial ellipsoids, with gravitational potential given by a sperical-harmonic expansion. Mass concentrations are modeled as point masses. The character of spacecraft orbits about asteroids is discussed, along with detectibility of gravitational coefficients and of mass concentrations. A Kalman-filtering treatment of the observation process, for Eros as example, shows that using DSN tracking and onboard gravity gradiometry, radar altimetry, and celestial angle measurements, a single orbit yields asteroid mass to 0.03% and coefficients C20 to C44 to 1% accuracies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.