Abstract

We consider measurement disturbance tradeoffs in quantum machine learning protocols which seek to learn about quantum data. We study the simplest example of a binary classification task in the unsupervised regime. Specifically, we investigate how a classification of two qubits, that can each be in one of two unknown states, affects our ability to perform a subsequent classification on three qubits when a third is added. Surprisingly, we find a range of strategies in which a nontrivial first classification does not affect the success rate of the second classification. There is, however, a nontrivial measurement disturbance tradeoff between the success rate of the first and second classifications, and we fully characterize this tradeoff analytically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.