Abstract

Most quantum key distribution schemes exploiting orbital angular momentum-carrying optical beams are based on conventional set-ups, opening up the possibility of detector side-channel attacks. These optical beams also suffer from spatial aberrations due to atmospheric turbulence and unfavorable weather conditions. Consequently, we introduce a measurement device-independent quantum key distribution implemented with vector vortex modes. We study the transmission of vector vortex and scalar beams through a turbulent atmospheric link under diverse weather conditions such as rain or haze. We demonstrate that a maximum secure key transmission distance of 178 km can be achieved under clear conditions by utilizing the vector vortex beams, which have been mainly ignored in the literature. When raindrops have a diameter of 6 mm and fog particles have a radius of 0.5 upmum, the signals can reach 152 km and 160 km, respectively. Since these distances are comparable, this work sheds light into the feasibility of implementing measurement device-independent quantum key distribution using vector vortex modes under diverse weather conditions. Most significantly, this opens the door to practical secure quantum communications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call