Abstract
Vapor pressure data for water, ethanol, 1-propanol, and 2-propanol, as well as the mixtures of {water+1-propanol} and {water+2-propanol}, were experimentally measured in the presence of an ionic liquid (IL) 1,3-dimethylimidazolium methylsulfate ([MMIM][MS]) at varying IL-contents and temperatures using a quasi-static ebulliometric method. The experimental vapor pressure data for binary systems containing IL were correlated using NRTL model with an overall relative root mean square deviation (rRMSD) of 0.0055, and the obtained binary NRTL parameters were employed to predict the vapor pressure for two ternary systems with an overall rRMSD less than 0.0234. Moreover, the inter-molecular interaction between [MMIM][MS] and volatile solvent was assessed theoretically in terms of the predicted activity coefficients of solvents for binary systems and quantum chemical calculations with polarizable continuum model. Finally, isobaric VLE data were predicted for three ternary systems containing [MMIM][MS] with IL mole fraction of 0.05, 0.15, and 0.25 at 101.325kPa, respectively. The results indicate that [MMIM][MS] might be applied as a promising entrainer to separate the azeotropic mixtures of {water+ethanol}, {water+1-propanol}, and {water+2-propanol} by extractive distillation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.