Abstract

Compressive imaging can acquire image signal in an under-sampled (i.e., under Nyquist rate) representation called measurement. However, measurement compression still has an essential problem in its overall rate-distortion performance. In this paper, we propose a measurement prediction method in which the best predictor is directionally selected in order to reduce the entropy of measurement to be sent. Generally, the measurement prediction usually works well with a small block while the quality of recovery is known to be better with a large block. In order to overcome this dilemma, we propose to use a structural measurement matrix with which compressive sensing is done in a small block size but recovery is performed in a large block size. In this way, both prediction and recovery are expected to be improved at the same time. Experimental results show its superiority in measurement coding amounting up to bitrate reduction by 39 %.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.