Abstract
The performance of field portable direct-reading organic vapor monitors (DROVMs) was evaluated under a variety of experimental conditions. Four of the DROVMs had photoionization detectors (ppbRAE, IAQRAE, MultiRAE, and Century Toxic Vapor Analyzer), one had a flame ionization detector (Century Toxic Vapor Analyzer), and one was a single-beam infrared spectrophotometer (SapphIRe). Four of each DROVM (two Century Toxic Vapor Analyzers and SapphIRes) were tested. The DROVMs were evaluated at three temperatures (4°C, 21°C, and 38°C), three relative humidities (30%, 60%, and 90%), and two hexane concentrations (5 ppm and 100 ppm). These conditions were selected to provide a range within the operational parameters of all the instruments. At least four replicate trials were performed across the 18 experimental conditions (3 temperatures × 3 relative humidities × 2 concentrations). To evaluate performance, the 4-hr time-weighted average readings from the DROVMs in a given trial were compared with the average of two charcoal tube concentrations using pairwise comparison. The pairwise comparison criterion was ±25% measurement agreement between each individual DROVM and the DROVMs as a group and the average charcoal tube concentration. The ppbRAE group performed the best with 40% of all readings meeting the comparison criterion followed by the SapphIRe group at 39%. Among individual DROVMs, the best performer was a SapphIRe, with 57% of its readings meeting the criterion. The data was further analyzed by temperature, humidity, and concentration. The results indicated the performance of some DROVMs may be affected by temperature, humidity, and/or concentration. The ppbRAE group performed best at 21°C with the percentage of readings meeting the criterion increasing to 63%. At the 5 ppm concentration, 44% of the ppbRAE group readings met the criterion, while at 100 ppm, only 35% did. The results indicate that monitors can be used as survey tools. Based on the data, the inconsistent performance of these DROVMs may not allow them to be used for determining compliance with occupational exposure limits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.