Abstract

Recent experiments claiming formation of quantum superposition states in near macroscopic sys- tems raise the question of how the sizes of general quantum superposition states in an interacting system are to be quantified. We propose here a measure of size for such superposition states that is based on what measurements can be performed to probe and distinguish the different branches of the state. The measure allows comparison of the effective size for superposition states in very different physical systems. It can be applied to a very general class of superposition states and reproduces known results for near-ideal cases. Comparison with a prior measure based on analy- sis of coherence between branches indicates that significantly smaller effective superposition sizes result from our measurement-based measure. Application to a system of interacting bosons in a double-well trapping potential shows that the effective superposition size is strongly dependent on the relative magnitude of the barrier height and interparticle interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.