Abstract

This paper presents an improved method to estimate the available inertia in an islanded AC microgrid. Inertia estimation is carried out based on measured frequency response for any arbitrary disturbance that occurs in the system. Modifications are made to the conventional swing equation-based curve-fitting method to obtain an accurate estimate for a system with high penetration of renewable generations. A polynomial curve fit over the total power generation is introduced to estimate the size of the disturbance accurately. Additionally, a variable order polynomial fit is carried out over the measured frequency, which not only improves the estimate of inertia but also helps to refrain the influence of network topology and size/location of the disturbance. The test microgrid system considered is a modified Standard IEEE distribution network, which consists of radial feeders and distributed generations. Firstly, the proposed method is tested on a system with only synchronous generations to assess the accuracy of the estimate. This is followed by the integration of Type 3 and Type 4 wind turbines, and a PV array within the microgrid system. Virtual inertia control is then implemented in the wind turbines to obtain inertial support. Estimation study of the microgrid system with virtual inertia is then carried out. The developed estimation method can accurately estimate the inertia provided by the synchronous sources within the generation mix. Finally, from all the results and observations, the inertia estimation process in a microgrid system is segregated into synchronous and nonsynchronous inertia estimation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.