Abstract

We study a measurement framework motivated by considering macroscopic (i.e. large, active, and with finite temperature) measurement of microscopic (i.e. small and lossless) but classical dynamics. This unavoidably leads to “measurement back action” on the microscopic dynamics that nevertheless still allows for optimal filtering to minimize estimation error, but with tradeoffs between errors due to estimation and errors due to the back action. We focus on a simple case in which the deterministic effects of the measurement process are completely canceled by active control, and the remaining (coupled) stochastic back action and measurement noise is optimally filtered to minimize estimation error. This leads to a particularly interesting tradeoffs and limits on estimation and back action, analogous in many respects with the Heisenberg uncertainty principle but in an entirely classical framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.