Abstract

The rotating spiral waves that emerge in diverse natural and man-made systems typically exhibit a particle-like behaviour since their adjoint critical eigenmodes (response functions) are often seen to be localised around the spiral core. We present a simple method to numerically compute response functions for circular-core and meandering spirals by recording their drift response to many elementary perturbations. Although our method is computationally more expensive than solving the adjoint system, our technique is fully parallellisable, does not suffer from memory limitations and can be applied to experiments. For a cardiac tissue model with the linear spiral core, we find that the response functions are localised near the turning points of the trajectory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.