Abstract

We present in this study a novel way to determine the three-dimensional (3D) temperature field o f a R adio Frequency Silicon On Insulator (RF SOI) electronic chip, using several resistance temperature detectors (RTDs) embedded at different locations of the chip. The RTDs are designed and placed at different locations to experimentally obtain the temperature at key locations of the chip enabling the calibration of a multiphysical numerical model that provides the 3D temperature field in the whole chip under operating conditions. The obtained results provide useful insights on the role of different parameters (e.g. used materials properties, heat source power, substrate, boundary conditions, etc.) to engineers interested in the modelling and optimization of heat transport and thermal management of electronic chips for RF applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.