Abstract

In this work we report on the extensive characterization of amorphous silicon carbide ($a$-SiC) coatings prepared by physical deposition methods. Our investigation is performed within the perspective application of $a$-SiC as an optical material for high-precision optical experiments and, in particular, in gravitational wave interferometry. We compare the results obtained with two different sputtering systems [a standard radio frequency (rf) magnetron sputtering and an ion-beam sputtering] to grasp the impact of two different setups on the repeatability of the results. After a thorough characterization of structural, morphological, and compositional characteristics of the prepared samples, we focus on a detailed study of the optical and mechanical losses in those materials. Mechanical losses are further investigated from a microscopic point of view by comparing our experimental results with molecular dynamic simulations of the amorphous SiC structure: first we define a protocol to generate a numerical model of the amorphous film, capturing the main features of the real system; then we simulate its dynamical behavior upon deformation in order to obtain its mechanical response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.