Abstract

New combustion systems developed for low emissions have produced substantial changes to the characteristics of inlet turbulence entering nozzle guide vanes. This paper documents the characteristics of turbulence generated by mock combustion system configurations representative of recently developed catalytic and dry low NOx combustors. Additionally, heat transfer rates are determined on the surface of a vane subjected to inlet turbulence generated by these mock combustor configurations. Six different inlet turbulence conditions with levels ranging up to 14% are documented in this study and vane heat transfer rates are acquired at exit chord Reynolds numbers ranging from 500,000 to 2,000,000. Heat transfer distributions show the influence of turbulence level and scale on heat transfer augmentation and transition. Cascade aerodynamics are well documented and match pressure distributions predicted by a commercial CFD code for this large-scale low-speed facility. The vane pressure distribution could be characterized as a conventional or fully loaded distribution. This comprehensive data set is expected to represent an excellent test case for vane heat transfer predictive methods. Predictive comparisons are shown based on a two-dimensional boundary layer code using an algebraic turbulence model for augmentation as well as a transition model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call