Abstract
Dipole magnet vacuum chambers are among the most critical and costly components of rapid-cycling accelerator facilities. Alternative approaches to traditional ceramic chambers have been explored for the implementation of fast-ramping dipole-magnet vacuum chambers, including thin-wall metallic beam pipe chambers strengthened with transverse ribs and ceramic rings inside thin-walled chambers. Here, we report a novel 3D-printed titanium alloy cage inside the thin-wall vacuum chamber, which is designed for high-intensity heavy ion accelerator facility (HIAF) to reduce manufacturing difficulty and cost, shorten the production cycle, and improve the quality. Comprehensive studies were undertaken to characterize the impedance of the 3D-printed titanium alloy cage inside the thin-wall vacuum chamber. The beam-coupling impedance and eddy currents of the new thin-wall vacuum chamber were studied mostly numerically. Strategies for further reducing the beam-coupling impedance were explored. In addition, impedance bench measurements using the "half wavelength" resonant method were conducted to identify the longitudinal and transverse impedances of the 3D-printed titanium alloy cage inside the thin-wall vacuum chamber prototype experimentally. The simulated and measured results for the impedance were consistent. Furthermore, a campaign for resonance-check measurements on the 3D-printed titanium alloy ring loaded inside a thin-wall vacuum chamber prototype was launched. This novel thin-wall vacuum chamber structure is now entering the fabrication stage and will soon be ready for installation in the Booster Ring (BRing).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.