Abstract

We derive an analytical model of diffusive thermal transport in multilayer structures of spherical symmetry and apply it to transient thermoreflectance measurements of gold nanoparticles embedded in a polymer matrix. This multilayer approach significantly improves the quantitative measurement of material thermal properties, in comparison with single-layer methods. The model adapts the typical planar transfer matrix model to a spherical geometry, and we apply it to transient thermoreflectance (TTR) experiments on gold nanoparticles embedded in a polymer matrix, to published TTR data for aqueous platinum nanoparticles, and also to example systems of aqueous gold and platinum nanoparticles. We measure a thermal boundary conductance value of 410MW/m2K at the nanoparticle gold/polymer interface. The sensitivity of the TTR signal to system thermal properties is predicted as a function of the particle/matrix thermal boundary resistance (TBR), and we discuss the differentiation of TBR and capping layer effects on a TTR signal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call