Abstract

A field data set of the artificial breaching of a coastal lagoon berm is presented, and includes a detailed analysis of the breach evolution in plan and elevation, together with water levels and flow velocities. A semi-coupled two-dimensional (depth averaged) numerical model describing both the shallow water hydrodynamics and morphodynamics is developed and tested against the field data. Key hydrodynamic and morphodynamic processes are discussed, and strategies to model these processes are presented and evaluated, such as accounting for modified roughness under transcritical flows and testing an improved algorithm for widening of the breach channel through side wall erosion. While further research is warranted, the processes relating to the erosion of the breach side walls and sediment transport under transcritical flow regimes were found to be essential to developing a realistic model of the overall breach process. A new channel bank erosion model is developed and implemented, which shows improved performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.