Abstract

In this paper, we present the results of the measurement and modeling of ultrawideband (UWB) time of arrival (TOA)-based ranging in different indoor multipath environments. We provide a detailed characterization of the spatial behavior of ranging, where we focus on the statistics of the ranging error in the presence and absence of the direct path (DP) and evaluate the path loss behavior in the former case, which is important for indoor geolocation coverage characterization. The frequency-domain measurements were conducted, with a nominal frequency of 4.5 GHz with two different bandwidths, i.e., 500 MHz and 3 GHz. The parameters of the ranging error probability distributions and path loss models are provided for different environments (e.g., an old office, a modern office, a house, and a manufacturing floor) and different ranging scenarios [e.g., indoor to indoor (ITI), outdoor to indoor (OTI), and roof to indoor (RTI)].

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call