Abstract
Three graphene nanoplatelet (GNP) nanofluids with different base fluids, viz. ethylene glycol (EG), deionized water (DW), and EG/DW (1:1) were prepared and characterized. The stability of GNP nanofluid was analyzed. Thermal conductivity was tested over the temperature range −20 °C to 50 °C. A new model is proposed for the effective thermal conductivity of the GNP nanofluid considering Brownian motion, length, thickness, average flatness ratio and interfacial thermal resistance of GNP, and it was compared with Maxwell, H-C and Chu models. The maximum thermal conductivity enhancement of EG, EG/DW (1:1) and DW based nanofluid is 4.6%, 18% and 6.8% respectively. Interestingly, the thermal conductivity of EG based GNP nanofluids does not show appreciable enhancement. The thermal conductivity enhancement of EG/DW (1:1) GNP nanofluid is greater than that of pure EG GNP nanofluid. In particular, the enhancement ratio at subzero temperature is larger than that at higher temperatures. The new model and Chu model are in agreement with the experimental data, and the new model is more rational for the GNP nanofluids. The new model shows that the influence of Brownian motion of GNP on thermal conductivity is significant at higher temperatures, higher concentration and smaller nanoparticles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.