Abstract
Thermal-impedance models of single-finger and multifinger InGaP/GaAs heterojunction bipolar transistors (HBTs) are extracted from low-frequency S-parameters that are measured on wafer and at room-temperature, and from temperature-controlled dc measurements. Low-frequency S-parameters at room temperature are accurate for extracting thermal corner frequencies. However, the dc value of the thermal impedance depends on the emitter resistance and the dc current definitions of the HBT model; hence, they need to be extracted together from temperature-dependent dc measurements. The resulting thermal-impedance model explains the low-frequency dispersion well at varying bias conditions, and it is suitable for nonlinear circuit analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.