Abstract

Heat transfer measurements have been made on a transonic turbine blade undergoing natural transition and with a simulation of the effect of NGV wake interactions. The use of wide bandwidth heat transfer instrumentation permits the tracking of individual unsteady events that were identified as being due to either the impinging wakes or to the turbulent spots occurring within the transition process. Trajectories of these events as seen by the blade surface instrumentation have been measured. Numerical models have been developed for the effects of both types of turbulent activity. The convection of the wake through the passage is predicted, allowing for estimations of the expected times for which the boundary layer is disturbed by the wake fluid. The new model for the random generation and subsequent growth and convection of the turbulent spots produces a time-resolved prediction of the intermittent heat transfer signals by use of a time-marching procedure. By superimposing the two numerical models it is possible to simulate the measured instantaneous heat transfer characteristics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.