Abstract

We present a first comprehensive set of experiments that demonstrate the performance of activated carbon (AC) to reduce the availability of polycyclic aromatic hydrocarbons (PAHs) including alkylated-PAHs in petroleum-impacted sediments. The uptake in polyethylene samplers for total PAHs in a well-mixed sediment slurry was reduced up to 99% and 98% for petroleum-impacted sediments with oil contents of 1% and 2%, respectively, by treatment with 5% AC. The AC showed similar efficiency for parent-PAHs and a suite of alkylated-PAHs, which predominate over parent-PAHs in petroleum-impacted sediments. A mass transfer model was used to simulate the AC performance in a slurry phase with site-specific mass transfer parameters determined in this study. Comparison between the experimental data and simulation results suggested that dissolved organic matter and/or oil phase may have attenuated the AC performance by a factor of 5-6 for 75-300 μm AC with 5% dose at one month. The attenuation in AC performance became negligible with increase in AC-sediment slurry contact time to 12 months and with decrease in AC particle size. The results show the potential for AC amendment to sequester PAHs in petroleum-impacted sediments and the effect of contact time and AC particle size on the efficiency of the treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.