Abstract

For the first time, the charge states of adsorbed oxygen adatoms on the rutile TiO2(110)-1×1 surface are successfully measured and deliberately manipulated by a combination of noncontact atomic force microscopy and Kelvin probe force microscopy at 78 K under ultrahigh vacuum and interpreted by extensive density functional theory modeling. Several kinds of single and double oxygen adatom species are clearly distinguished and assigned to three different charge states: Oad-/2Oad-, Oad2-/2Oad2-, and Oad--Oad2-, i.e., formal charges of either one or two electrons per atom. Because of the strong atomic-scale image contrast, these states are clearly resolved. The observations are supported by measurements of the short-range force and local contact potential difference as a function of the tip-sample distance as well as simulations. Comparison with the simulations suggests subatomic resolution by allowing us to resolve the rotated oxygen p orbitals. In addition, we manage to reversibly switch the charge states of the oxygen adatoms between the Oad- and Oad2- states, both individually and next to another oxygen, by modulating the frequency shift at constant positive voltage during both charging and discharging processes, i.e., by the tip-induced electric field of one orientation. This work provides a novel route for the investigation of the charge state of the adsorbates and opens up novel prospects for studying transition-metal-oxide-based catalytic reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.