Abstract

AbstractA 7 year time series of satellite radar images over Unimak Island, Alaska—site of Westdahl Volcano, Fisher Caldera, and Shishaldin Volcano—was processed using a model‐free Persistent Scatterer Interferometry technique assisted by numerical weather prediction model. The deformation‐only signals were optimally extracted from atmosphere‐contaminated phase records. The reconstructed deformation time series maps are compared with campaign and continuous Global Positioning System (GPS) measurements as well as Small Baseline Subset interferometric synthetic aperture radar (InSAR) results for quality assessment and geophysical interpretation. We observed subtle surface inflation at Westdahl Volcano that can be fit by a Mogi source located at approximately 3.6 km north of Westdahl peak and at depth of about 6.9 km that is consistent with the GPS‐estimated depth for the 1998 to 2001 time period. The magma chamber volume change decays during the period of 2003 to 2010. The deformation field over Fisher Caldera is steadily subsiding over time. Its best fit analytical model is a sill source that is about 7.9 km in length, 0.54 km in width, and located at about 5.5 km below sea level underneath the center of Fisher Caldera with strike angle of N52°E. Very little deformation was detected near Shishaldin peak; however, a region approximately 15 km east of Shishaldin, as well as an area at the Tugamak range at about 30 km northwest of Shishaldin, shows evidence for movement toward the satellite, with a temporal signature correlated with the 2004 Shishaldin eruption. The cause of these movements is unknown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.