Abstract

QT dispersion was proposed as an index of the spatial inhomogeneity of ventricular recovery times. The results of studies that found significant correlation between dispersion of ventricular recovery times measured with monophasic action potentials and QT dispersion were interpreted as proof of the direct link between QT dispersion and the dispersion of ventricular recovery times. Later it was shown that QT dispersion is not a direct reflection of the spatial variation of the recovery times and cannot be used for quantification of this variation. The interlead variability of the QT intervals is a result of different projections of the spatial T-wave loop into the various electrocardiographic leads. The reliability of both manual and automatic measurement of QT dispersion is low and is often of the order of the differences of Qt dispersion between different patient groups. The measurement reliability is influenced by intrinsic factors (eg, amplitude of the T wave) and extrinsic factors (eg, noise, paper speed of recording, instruments for manual measurements, and type of algorithm and interalgorithmic settings for automatic measurement). There is very little to choose between the different indices of expression of QT dispersion, as well as between the different lead configurations used for its measurement. QT dispersion is not simply a result of measurement error, but a crude measure of abnormalities during the whole course of repolarization. Only grossly prolonged QT dispersion (eg, ≥100 ms), must be interpreted simply as a sign of the abnormal course of the repolarization, and inferences about the actual dispersion of the ventricular recovery times should not be made. Newer concepts of assessment of the morphology of the T wave are already emerging and will probably be of higher clinical value. Copyright © 2000 by W.B. Saunders CompanyProgress in Cardiovascular Diseases, Vol. 42, No. 5 (March/April), 2000: pp 325-344

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.