Abstract

There is a growing need for information relating to soil condition, its current status, and the nature and direction of change in response to management pressures. Monitoring is therefore being promoted regionally, nationally, and internationally to assess and evaluate soil condition for the purposes of reporting and prioritisation of funding for natural resource management. Several technical and methodological obstacles remain that impede the broad-scale implementation of measurement and monitoring schemes, and we present a dataset designed to (i) assess the optimum size of sample site for soil monitoring, (ii) determine optimum sample numbers required across a site to estimate soil properties to known levels of precision and confidence, and (iii) assess differences in the selected soil properties between a range of land-use types across a basalt landscape of northern NSW. Sample site size was found to be arbitrary and a sample area 25 by 25 m provided a suitable estimate of soil properties at each site. Calculated optimum sample numbers differed between soil property, depth, and land use. Soil pH had a relatively low variability across the sites studied, whereas carbon, nitrogen, and bulk density had large variability. Variability was particularly high for woodland soils and in the deeper soil layers. A sampling intensity of 10 samples across a sampling area 25 by 25 m was found to yield adequate precision and confidence in the soil data generated. Clear and significant differences were detected between land-use types for the various soil properties determined but these effects were restricted to the near-surface soil layers (0–50 and 50–100 mm). Land use has a profound impact on soil properties near to the soil surface, and woodland soils at these depths had significantly higher carbon, nitrogen, and pH and lower bulk density than the other land uses. Soil properties between the other non-woodland land-use types were largely similar, apart from a modestly higher carbon content and higher soil acidity under improved pasture. Data for soil carbon assessment should account for equivalent mass, since this significantly modified carbon densities, particularly for the lighter woodland soils. Woodland soils had larger quantities of carbon (T/ha corrected for equivalent mass) than any other land-use type, and in order to maintain the largest quantity of carbon in this landscape, retaining trees and woodland is the most effective option. Results from this work are being used to inform further development the NSW Statewide Soil Monitoring Program.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.