Abstract

In trabecular meshwork (TM) cells, actin geodesic arrangements were measured and then subjected to computational modeling to appreciate the response of different dome shapes to mechanical force. Polygonal actin arrangements (PAAs) and cross-linked actin networks (CLANs) were induced and imaged by Alexa Flour(®) 488 Phalloidin in bovine TM and human TM cells. Masked images were examined for size, circularity, and spoke and hub dimensions using ImageJ. Finite element modeling was used to create idealized dome structures and "realistic" PAA and CLAN models. The models were subjected to different loads simulating concentrated force and distortion measured. We provide evidence that PAAs and CLANs are not identical. Both structures formed flattened domes but PAAs were 6 times larger than CLANs, significantly more circular and had greater height. The dimensions of the triangulations of hubs and spokes were, however, remarkably similar. Hubs were around 2 μm(2) in area, whereas spokes were about 5 μm in length. Our modeling showed that temporary arrangements of polygonal actin structures (TAPAS) were because of their flattened shape, more resistant to shearing than compression when compared with idealized domes. CLANs were marginally more resistant to shearing than PAAs but because of size much more resistant to compression. Evidence is provided that there are 2 types of actin icosahedrons in cultured TM cells we collectively call TAPAS. Modeling suggests that TAPAS have rigidity and are better at dealing with shearing than compression forces. The 2 types of TAPAS, PAAs, and CLANs, have much in common but there are size and mechanical response differences that need to be taken into account in future experimentation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.