Abstract

In ultra-precision diamond turning of freeform optics, it is necessary to obtain submicron-level form accuracy with high efficiency. In this study, we proposed a new method for the quick measurement and compensation of tool contour errors to improve the form accuracy of the workpiece. In this method, the nanometer-scale contour error of a diamond tool is quickly and precisely measured using a white light interferometer and then compensated for, before machining. Results showed that the contour of a diamond tool was measured with an error less than 0.05 μm peak-to-valley (P-V) and the feasibility of error compensation was verified through cutting experiments to create a paraboloid mirror and a microlens array. The form error decreased to 0.2 μm P-V regardless of the contour error of the diamond tools when cutting the paraboloid mirror, and that of the microlens array was reduced to 0.15 μm P-V during a single machining step.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call