Abstract

The measurement and compensation of volumetric positioning errors can be used to significantly improve the accuracy of machine tools. In this paper, a sequential step diagonal measurement is introduced to measure nine volumetric positioning errors in a short time. Measurements under various thermal conditions are preformed to understand the relationship between the volumetric positioning errors and the machine temperature field and variations. A radial basis function neural network is used to predict the volumetric positioning errors at all positions based on the temperature distribution of the machine. Compensation experiment is carried out to validate the performance of the measurement and the prediction method. The experimental results show that the volumetric accuracy of the machine tool is significantly improved by the error compensation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.