Abstract

The fifth mobile communications generation (5G) offers the deployment scenario of licensed 5G standalone non-public networks (NPNs). Standalone NPNs are locally restricted 5G networks based on 5G New Radio technology which are fully isolated from public networks. NPNs operate on their dedicated core network and offer organizations high data security and customizability for intrinsic network control. Especially in networked and cloud manufacturing, 5G is seen as a promising enabler for delay-sensitive applications such as autonomous mobile robots and robot motion control based on the tactile internet that requires wireless communication with deterministic traffic and strict cycling times. However, currently available industrial standalone NPNs do not meet the performance parameters defined in the 5G specification and standardization process. Current research lacks in performance measurements of download, upload, and time delays of 5G standalone-capable end-devices in NPNs with currently available software and hardware in industrial settings. Therefore, this paper presents initial measurements of the data rate and the round-trip delay in standalone NPNs with various end-devices to generate a first performance benchmark for 5G-based applications. In addition, five end-devices are compared to gain insights into the performance of currently available standalone-capable 5G chipsets. To validate the data rate, three locally hosted measurement methods, namely iPerf3, LibreSpeed and OpenSpeedTest, are used. Locally hosted Ping and LibreSpeed have been executed to validate the time delay. The 5G standalone NPN of Reutlingen University uses licensed frequencies between 3.7-3.8 GHz and serves as the testbed for this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call