Abstract

A method for determining diffusion coefficients of four antibiotics in extracellular tissue space according to Fick's law is described. This new method was applied to rat brain tissue and to agar. After diffusion of the antibiotic in one axis, the gradient concentration was determined with microvoltammetric electrodes. These microelectrodes (1 micron at the extreme tip) measured the free diffusible form of electroactive antibiotics in the extracellular brain space. Metronidazole, chloramphenicol succinate, cefsulodin, and piperacillin gave diffusion coefficients ranging from 0.1 x 10(-6) to 0.2 x 10(-6) cm2 . s-1 in tissue; chloramphenicol base, which is positively charged, gave a coefficient of 0.04 x 10(-6) cm2 . s-1. The coefficient ranged from 0.6 x 10(-6) to 1.2 x 10(-6) cm2 . s-1 in agar. These coefficients were used to simulate antibiotic concentrations in infectious sites and between capillaries by using a simple model of plane diffusion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.