Abstract

Fluctuation components on a backward Rayleigh scattered signal measured by the polarization optical time domain reflectometer (POTDR) have been investigated in detail by means of the least squares method and the power spectra. As a result, it is revealed that the fluctuation component for the single-mode optical fibers is attributable to the inherent polarization beat length determined by the difference of the phase velocities between the orthogonal e HE 11 and o HE 11 modes. The power spectrum of the fluctuation is sharply peaked at the Fourier frequency determined by the polarization beat length of approximately 15 m, which is in good agreement with the analysis. The utilization of the power spectrum presents a new method to diagnose the polarization properties along the optical fiber.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.