Abstract

High frequency voltage oscillations will be generated when transient overvoltages intrude into power transformers. These oscillations may cause damage to the insulation of transformers. In this paper, a capacitive coupling sensor array was presented for measuring voltage distributions and voltage gradient distributions in low-voltage winding of a 1000 kV power transformer. A variable impedance transmission line between impulse generator and winding was also designed to avoid distortion of the applied impulses. The results indicate that under the lightning impulse voltages, voltage distributions have been restrained below applied voltage at sandwich-interleaved section but exceed the applied voltage in continuous coils in the first half of the winding and lead to a very nonuniform voltage distribution. Longer duration time will result in a more nonuniform distribution. The amplitude of the transient voltage under steep front square wave reduces faster downward the winding than that under lightning impulse voltages. A shorter rise time will lead to a much worse distribution. In addition, a dominated oscillation of 63 kHz is found under both impulse voltages and steep front square waves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.