Abstract
Mitigation of interference among adjacent radio systems is a topic of growing interest as the spectrum occupation increases. Site-shielding techniques appear as a method of improving millimeter-wave wireless communication system design, allowing frequency reuse and reducing cochannel interference. The viability of applying such techniques to systems operating in frequency bands around 40 GHz is the aim of this paper. Several propagation mechanisms are experimentally studied, including transmission across building obstacles, depolarization, reflection, and diffraction. The performance of some theoretical models of the different scattering mechanisms has been compared with measurement results. The measuring and processing procedures have also been improved. Values of the dielectric parameters of the materials in this frequency band have been obtained and are given in this paper. The attenuation results indicate that various materials, such as mortar, brick, and concrete walls, that present large values of attenuation in decibels per centimeter, can be used to shield base stations, reducing the frequency reuse distance in radio cellular networks. It can also be concluded that there is a significant diffracted field in the shadow region of brick corners.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.