Abstract

Inductive coupling is becoming a design concern for global interconnects in nanometer technologies. We present measurement results of the effect of inductive coupling on timing, and demonstrate that inductive coupling noise is a practical design issue in 90 nm technology. The measured delay change curve is consistent with circuit simulation results for an RLC interconnect model, and clearly different from those for a conventional RC model. The long-range coupling effect of inductive coupling, and noise reduction caused by ground insertion or decreased driver size were clearly observed on silicon. Examination of noise cancellation and superposition effects shown in measurement results confirm that the summation of delay variations due to each individual aggressor is a reasonable approximation of the total delay variation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.