Abstract

To validate the concept design of a novel fusion–fission hybrid energy reactor, a depleted uranium assembly and a combined assembly of uranium and polyethylene were designed and assembled based on a depleted uranium spherical shell and a polyethylene spherical shell. The distribution of the fission rates for the depleted uranium and enriched uranium in the two assemblies, as a function of the distance of the detection position to the centre, was measured using a plate fission chamber bombarded by D-T neutrons. The addition of a polyethylene shell significantly changed the neutron spectrum; in particular, the neutron fluxes with energies of 1 MeV and lower were changed. Using MCNP5 and the attached libraries, the fission rate experiments were simulated, and the experimental configuration, including the wall of the experimental hall, was described in detail in the model. The fission rate distributions for depleted uranium and enriched uranium in the two assemblies were reproducible. The difference between the calculated results with different libraries and different tallies is as small as 1.0%. By considering the neutron flux, the fission rate and the C/E values, it is concluded that the fission rates of depleted uranium and enriched uranium induced by the fast neutrons were overestimated, and it is proposed that the fission parameters of uranium for fast neutrons should be re-evaluated, or the margin of the concept design should be enlarged, to make the concept effective.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.