Abstract
Surface tension is an important thermodynamic parameter for vanadium redox flow battery (VRFB) however its related theoretical study for multicomponent systems containing sulfuric acid at high concentration is rare due to the complexity of ion interaction in the electrolyte. In this work, the surface tension and density of VOSO4-H2SO4-H2O electrolyte solution were firstly measured at different temperatures from 283.15 to 313.15 K over a wide range of solute concentration. The average molar volume (V) was calculated according to above experimental data, and then the new definition of molar surface Gibbs free energy (gs) and improved Eötvös equation for VOSO4-H2SO4-H2O ternary solution has been derived based on Li’s theory. Simultaneously, several thermodynamic data of this ternary solution were obtained, such as the value of molar surface entropy, s, molar surface enthalpy, h, and Eötvös empirical parameter. In addition, the high-accuracy and semi-empirical equation was established to predict the surface tension of the VOSO4-H2SO4-H2O ternary solution based on the new gs definition. The results revealed that predicted values are in good agreement with the experimental values and correlation coefficient is 0.9993. This work provides basic data for mass transfer and heat transfer analysis of the VRFB and it also provides convenience for evaluating the interface effect between the electrolyte and other components when optimizing the composition of electrolyte and improving battery performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.