Abstract

This article focuses on an innovative methodology developed by researchers at Stanford University. The new way of measuring the forces that cause head injuries aim to change how engineers protect professional and weekend athletes. By embedding both accelerometers and gyroscopes within the mouth guards, the laboratory tracked all six degrees of freedom and slashed data errors to 10 percent or less. According to one of the developer, since the upper teeth are firmly coupled to the bones of the cranium, the mouthguards can provide data accurate enough for the lab to use in finite element models to describe what is happening inside the brain. The team input the incident’s kinematics data into a finite element analysis model of the brain developed by the KTH Royal Institute of Technology in Sweden. This enabled them to simulate how different structures within the brain responded to the impact. The computer simulation showed that the falx cerebri appears to be the culprit. It is a rigid vertical sheet that separates the brain’s two lobes. It lies right above the corpus callosum and extends upward, attaching to the skull at the very top. It conducts impact energy from the skull deep into the brain, where it oscillates and induces strain in the corpus callosum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.