Abstract

A field study was conducted in September 1995 to measure the ambient atmospheric concentrations of methyl bromide (MeBr) in the Salinas Valley, California. Air concentrations of MeBr were measured at 11 sites located on the adjacent mountains, valley floor and at the Pacific Ocean coast over a 4-d period. The concentrations ranged up to 8.98 μg m −3. Industrial Source Complex Short Term 3 (ISCST3) and CALPUFF dispersion model simulations were performed with several fumigated fields serving as sources, using two estimates of source strengths from published flux values. CALPUFF was driven by 3D meteorology from CALMET. With the lower of the two estimates, the ISCST3 model underpredicted concentrations for 76% of data and averaged 66% of measured, and the CALPUFF model also underpredicted concentrations for 67% of observations and averaged 84% of measured. With the higher of the two estimates the ISCST3 overpredicted by a factor of two for 67% of data, and CALPUFF overpredicted concentrations by a factor of 1.6 for over 50% of data. Between the model predicted and measured concentrations, the coefficient of determination, R 2 , was ≈0.7 for both source strengths with ISCST3 model. The R 2 with CALPUFF model was 0.55 and 0.82 with source strength estimated from two prior flux studies. The margin of exposure (MOE) for the population of the city of Salinas was calculated based on the measured ambient concentrations and compared with the current benchmark used by US-EPA and California Department of Pesticide Regulation for acceptable human health risk. Based on the models predicted worst-case exposure concentration, the MOE for acute effects was approximately 10,000. For chronic effects it was approximately 100, indicating a need for attention to exposure to MeBr in areas of intense methyl bromide use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call