Abstract

Abstract Sensible and latent heat fluxes were estimated from turbulence measurements gathered during several Atlantic Ocean transects of the research vessel (R/V) Polarstern. The inertial dissipation method was used to analyze the data. Resulting bulk transfer coefficients were then applied to the data from the ship’s meteorological system to get continuous time series of the heat fluxes. Combined with the measured downward solar and longwave radiation fluxes it allows for an estimate of the total energy budget at the air–sea interface. Comparing these parameterized energy fluxes to those based on the Coupled Ocean–Atmosphere Response Experiment, version 3 (COARE3.0), bulk flux algorithm shows very strong agreement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.