Abstract

Due to spectrum congestion in the commonly used mobile sub-6GHz frequencies, research and measurements in the Millimetre Wave (30–300GHz) bands are required to better understand the medium for 5G and beyond wireless connectivity. In this paper corner diffraction is investigated for an indoor environment in a modern building using a wideband (2GHz) channel sounder at 60GHz. Corner diffraction was measured at five different distances from the corner of interest, with parallel tracks at distances of 0.5m, 1m, 1.5m, 2m and 10m. These measurements were then compared with a Knife Edge Diffraction (KED) model where a ‘good-fit’ was observed. Results showed that for 2m parallel tracks the power fell by 30dB as the user moved just 0.5m into the shadow region. For a 10m parallel track, the same effect was observed after moving 1.2m into the shadow region. Such rapid changes in received power can adversely affect the performance of link adaptation and beam tracking algorithms as well as the efficiency of the higher layer network protocols.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.