Abstract

We address the issue of quantifying the non-Gaussian character of a bosonic quantum state and introduce a non-Gaussianity measure based on the Hilbert-Schmidt distance between the state under examination and a reference Gaussian state. We analyze in detail the properties of the proposed measure and exploit it to evaluate the non-Gaussianity of some relevant single-mode and multimode quantum states. The evolution of non-Gaussianity is also analyzed for quantum states undergoing the processes of Gaussification by loss and de-Gaussification by photon-subtraction. The suggested measure is easily computable for any state of a bosonic system and allows one to define a corresponding measure for the non-Gaussian character of a quantum operation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.