Abstract

Let \(B\) be an \(n\times n\) real expanding matrix and \(\mathcal {D}\) be a finite subset of \(\mathbb {R}^n\) with \(0\in \mathcal {D}\). The self-affine set \(K=K(B,\mathcal {D})\) is the unique compact set satisfying the set-valued equation \(BK=\bigcup _{d\in \mathcal {D}}(K+d)\). In the case where \(\#\mathcal D=|\det B|,\) we relate the Lebesgue measure of \(K(B,\mathcal {D})\) to the upper Beurling density of the associated measure \(\mu =\lim _{s\rightarrow \infty }\sum _{\ell _0, \ldots ,\ell _{s-1}\in \mathcal {D}}\delta _{\ell _0+B\ell _1+\cdots +B^{s-1}\ell _{s-1}}.\) If, on the other hand, \(\#\mathcal D<|\det B|\) and \(B\) is a similarity matrix, we relate the Hausdorff measure \(\mathcal {H}^s(K)\), where \(s\) is the similarity dimension of \(K\), to a corresponding notion of upper density for the measure \(\mu \).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call