Abstract
We propose a novel measure of chaotic scattering amplitudes. It takes the form of a log-normal distribution function for the ratios r_{n}=δ_{n}/δ_{n+1} of (consecutive) spacings δ_{n} between two (consecutive) peaks of the scattering amplitude. We show that the same measure applies to the quantum mechanical scattering on a leaky torus as well as to the decay of highly excited string states into two tachyons. Quite remarkably, the r_{n} obey the same distribution that governs the nontrivial zeros of Riemann ζ function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.