Abstract

This work is inspired by some recent developments on the extension of Lipschitz real functions based on the minimization of the maximum value of the slopes of a reference set for this function. We propose a new method in which an integral p–average is optimized instead of its maximum value. We show that this is a particular case of a more general theoretical approach studied here, provided by measure-valued representations of the metric spaces involved, and a duality formula. For p=2, explicit formulas are proved, which are also shown to be a particular case of a more general class of measure-based extensions, which we call ellipsoidal measure extensions. The Lipschitz-type boundedness properties of such extensions are shown. Examples and concrete applications are also given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.