Abstract

Let ${\cal F}=\{F_\alpha \}$ be a uniformly bounded collection of compact convex sets in $\mathbb R^n$. Katchalski extended Helly's theorem by proving for finite ${\cal F}$ that $\dim (\bigcap {\cal F})\geq d$, $0\leq d\leq n$, if and only if the intersec

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.